Functional analysis of novel glycosyltransferases toward the remodeling of the fission yeast glycans

Takao Ohashi

International Center for Biotechnology, Osaka University

Research aims

The glycans from the fission yeast Schizosaccharomyces pombe contain large amounts of α -linked D-galactose (Gal) in addition to α -linked D-mannose (Man) unlike other wellstudied yeasts or human. Alpha galactosylation, which is one of the significant characteristics of S. pombe, can be a primary hindrance to the development of therapeutic glycoprotein production system in this yeast, because α -galactosylation can cause the immune response in human body. To overcome this problem, the complete elimination of α galactosylation is required. Previously we succeeded in eliminating α -linked Gal residues by disruption of a gms1⁺ gene, which encodes Golgi localized UDP-Gal transporter. However UDP-Gal transporter activity is required for β 1,4galactosylation processes that produce the biantennary complex oligosaccharides in a subsequent humanization step in S. pombe. As an alternative approach, we constructed a septuple α -galactosyltransferase-related gene disruptant (7GalT Δ) and then analyzed its glycan structures. The glycan structural analysis of the 7GalT Δ mutant revealed that it still had α 1,3-linked Gal residues, indicating the presence of at least one more additional unidentified α 1,3-galactosyltransferase¹). In this study, we aimed to identify the novel α 1,3-galactosyltransferase(s) and to construct the S. pombe α -galactosylation null mutant by multiple α -galactosyltransferase gene disruptions.

Methods

The fission yeast strains were cultivated in YES medium at 30°C and harvested in early stationary phase. Cell surface glycoproteins were extracted by autoclaving at 121°C for 90 min in citrate buffer followed by precipitation with methanol. The precipitates were dissolved in hot water, dialyzed and lyophilized. Oligosaccharides were liberated from glycoproteins by hydrazinolysis, followed by *N*-acetylation. The reducing ends of the liberated oligosaccharides were pyridylaminated (PA) as described²⁾. The PA-oligosaccharides were analyzed by size-fractionation HPLC.

Results

In order to identify undiscovered α 1,3-galactosyltransferase(s), we searched for glycosyltransferase genes in the *S. pombe* genome sequence. Among the predicted glycosyltransferase genes, three genes (designated $otg1^+$, $otg2^+$ and $otg3^+$ for alpha one, three-galactosyltransferase, respectively) with unknown functions were identified. We disrupted the three genes from the 7GalT Δ mutant to construct a strain lacking 10 presumptive α -galactosyltransferase genes (10GalT Δ). The PA-glycans were prepared from glycoproteins from wild-type, $gms1\Delta$, 7GalT Δ and 10GalT Δ strains, and were analyzed by size-fractionation HPLC. The chromatogram of the 10GalT Δ strain was quite similar to that of the $gms1\Delta$ strain. In the $otg1\Delta otg2\Delta otg3\Delta$ triple disruption strain, the peaks corresponding to tetra-saccharides containing an α 1,3-Gal residue were absent, but peaks corresponding to di- and tri-saccharides containing an α 1,2-Gal residue were still present (Fig. 1).

To assess enzymatic activity of Otg proteins, they were expressed in 10GalT Δ cells. Solubilized membrane preparations from 10GalT Δ cells in which Otg proteins expressed were used as the enzyme source (Fig. 2). Assays carried out with UDP-Gal as donor substrate revealed that the Otg2 protein had Gal transfer activity toward a Man₉GlcNAc₂-PA and Man α 1,2-Man α 1,2-Man-PA. In addition, the Otg3 protein exhibited Gal transfer activity toward the Man₉Glc-NAc₂-PA. Generation of an α 1,3-linkage was confirmed by HPLC analysis, α -galactosidase digestion analysis, ¹H

Fig. 1. Size-fractionation HPLC of O-linked glycans from 10GalT Δ strain.

The chromatograms show *O*-linked oligosaccharides from each fission yeast strain. The vertical bars indicate the elution positions of the standard Man-PA and previously identified peaks in wild-type strain. In the schematic structures shown, the vertical and the diagonal bars between the letters indicate α 1,2- and α 1,3-linkages, respectively. Abbreviations: G, galactose; M, mannose; PA, pyridylamino.

Fig. 2. In vitro enzymatic assay of Otg proteins.

The size-fractionation HPLC profiles of the reaction mixtures using the acceptor substrate Man₉GlcNAc₂-PA (A), Man α 1,2Man α 1,2Man-PA (B) and solubilized enzyme extracts from 10GalT Δ expressing Otg proteins are shown.

NMR spectroscopy and LC-MS/MS analysis. These results indicate that Otg2p and Otg3p are involved in α 1,3-galactosylation of *S. pombe* oligosaccharides.

Conclusion

We have shown for the first time that the Otg proteins are

glycosyltransferases with the ability to form $\alpha 1,3$ -linkages between Gal and α -Man residues. Complete elimination of α -galactosylation in *S. pombe* was achieved by multiple deletions of newly found otg^+ genes. Moreover, the 10GalT Δ mutant constructed in the present study is likely to be valuable with respect to subsequent β -galactosylation, because α -galactosylation was absent, and simultaneously the Golgi-localized UDP-Gal transporter was still present.

References

- Ohashi, T. *et al.* (2011) Structural analysis of α1,3-linked galactosecontaining oligosaccharides in *Schizosaccharomyces pombe* mutants harboring single and multiple α-galactosyltransferase genes disruptions. *Glycobiology*. 21: 340–351.
- Ohashi, T. et al. (2009) The och1 mutant of Schizosaccharomyces pombe produces galactosylated core structures of N-linked oligosaccharides. Biosci. Biotechnol. Biochem. 73: 407–414.
- Ohashi, T., Fujiyama, K., and Takegawa, K. (2012) Identification of novel α1,3-galactosyltransferase and elimination of α-galactosecontaining glycans by disruption of multiple α-galactosyltransferase genes in *Schizosaccharomyces pombe. J. Biol. Chem.* 287: 38866– 38875.