49

Molecular evolution of *Streptomyces* serine peptidase for the synthesis of β -alanyl-histidine

Jiro Arima

Faculty of Agriculture, Tottori University

Research aims

Anserine (β -Ala- π -methyl-L-His), carnosine (β -Ala-L-His; Car), and balenine (β -Ala- τ -methyl-L-His) have been known to exist in excitable tissues such as skeletal muscle and brain. Moreover, β -Ala-branched chain amino acids (β -Ala-BCAA) also induced hyperactivity behavior as observed with carnosine.¹) Therefore, β -Ala containing dipeptides received special attention as a research target for functional analyses because of the availability of the reagent.

Some serine peptidases exhibit peptide or amino acid ligation (*i.e.* aminolysis) in accordance with their hydrolytic activity. Moreover, mutation of catalytic Ser to Cys to engineer the serine peptidase into "transpeptidase" for the peptide ligation has been well characterized.^{2,3)} Our recent approach demonstrates that wide distribution of family S9 aminopeptidases was confirmed.⁴⁾ Among enzymes from actinomycetes, we obtained S9 aminopeptidase from *Streptomyces thermocyaneoviolaceus* (S9AP-St) that can hydrolyze β -Ala derivatives. In this study, peptide synthetic activity of S9AP-St and its engineered variant, S502C S9AP-St was evaluated.

Methods

The engineered S9AP-St variant, S502C S9AP-St, was constructed on the basis of mutagenesis technique for QuickChange site directed mutagenesis kit (Stratagene). Wild-type and S502C S9AP-Sts were expressed in *E. coli* BL21 (DE3) harboring the expression vector for wild-type or S502C S9AP-St production. The enzymes were purified with anion exchange chromatography.

Peptide synthesis by aminolysis reaction was performed as follows: $10 \,\mu$ l of acyl donor substrate and $10 \,\mu$ l of acyl accepter substrate (they are amino acid derivative solution (in DMSO) at an appropriate concentration (~0.5 M)) were added into 75 μ l of 0.25 M Tris-HCl (pH 8.0). The reaction was initiated by adding 5 μ l of enzyme solution (2 mg/mL). The reaction was then continued at 25°C for an appropriate time (20 min to 50 h). After the reaction was terminated by adding 0.1 ml of 3% formic acid, the reaction mixture was analyzed by UPLC-ESI-TOF-MS or amino acid analyzer.

Results

S9AP-St displayed efficient hydrolytic activity toward L-

Phe-pNA and slight hydrolytic activity toward β -Ala-pNA. Its hydrolytic activity was abolished by the site-directed mutagenesis of catalytic Ser⁵⁰² into Cys. We evaluated the aminolytic activity of wild-type and S502C S9AP-Sts using various aminoacyl derivatives. When hydrophobic aminoacyl derivatives were used as substrates, S502C S9AP-St exhibit high peptide synthetic activity, as expected. However, the enzyme showed no aminolytic activity toward β -Ala-derivatives. In contrast, β -alanyl homopeptides were synthesized by wild-type S9AP-St whereas the enzyme showed no aminolytic activity toward hydrophobic aminoacyl derivatives (Table 1). We next evaluated the synthetic ability of heteropeptides containing β -Ala by using β -Ala-OBzl and various aminoacyl-derivatives (-OMe or OEt) as substrates. Wild-type S9AP-St could synthesize a wide variety of β -Ala peptides (Table 1). Interestingly, S9AP-St preferentially synthesized β -Ala-Xaa derivatives. In contrast, S502C S9AP-St could synthesize only Xaa- β -Ala derivatives with the specificity toward hydrophobic aminoacyl derivatives. The results indicated that the substrate specificity of aminolysis reaction was changed by the substitution of catalytic Ser⁵⁰² with Cys.

Because S9AP-St had synthetic ability of β -Ala-L-His-OMe (Car-OMe) and β -Ala-BCAA-OMes, we next investigated the optimization of production of such biologically active peptides using S9AP-St. For this investivation, Car-OMe was selected as a main product. As shown in Fig. 1A, the Car-OMe was steadily produced at the β -Ala-OBzl concentration of 10~40 mM when L-His-OMe concentration was maintained at a steady level of 20 mM. In contrast, the productivity of β -Ala- β -Ala-OBzl was increased following the increase of β -Ala-OBzl concentration. On the other hand, the productivity of Car-OMe was increased and that of β -Ala- β -Ala-OBzl was decreased following the increase of L-His-OMe concentration (Fig. 1A). As a result of the investigation on the effect of pH, the pH dependence curve for Car-OMe production was similar with that for the β -Ala-pNA hydrolytic activity (Fig. 1B). The Car-OMe was synthesized at this pH range with maximum production at pH 8.5. However, the productivity of byproduct, β -Ala- β -Ala-OBzl, was increased following the increase of pH (Fig. 1B). The production of another undesirable product, β -Ala- β -Ala- β -Ala-OBzl, hardly observed at these investigations.

As shown in Fig. 1C, when 20 mM β -Ala-OBzl and 20 mM L-His-OMe were used as substrates, Car-OMe was efficiently synthesized until 5 h, and the quantity of Car-OMe

		Products					
Substrate			wild-type S9AP-St	S502C S9AP-St			
			w/βA-OBzl		w/βA-OBzl		
		β A-Xaa, Xaa- β A	Byproducts		β A-Xaa, Xaa- β A	Byproducts	
G-OMe	n.d.	n.d.	$(\beta A)_2$ -OBzl	G ₃ -OMe	G-βA-OBzl	G_3 -OMe, G_2 - β A-OBzl	
LV-OMe	(LV) ₂ -OMe	β A-LV-OMe	$(\beta A)_2$ -OBzl, $(\beta A)_2$ -LV-OMe	n.d.	n.d.	n.d.	
LL-OEt	n.d.	β A-LL-OEt	$(\beta A)_2$ -OBzl	$(LL)_2$ -OMe, $(LL)_3$ -OMe etc	LL- β A-OBzl	$(LL)_2$ -OMe, $(LL)_3$ -OMe etc	
LI-OMe	n.d.	β A-LI-OMe	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LM-OMe	n.d.	β A-LM-OMe	$(\beta A)_2$ -OBzl, $(\beta A)_2$ -LM-OMe etc	(LM) ₂ -OMe	LM- β A-OBzl	$(LM)_2$ -OMe, $(LM)_2$ - β A-OBzl	
LF-OEt	n.d.	β A-lF-OEt	$(\beta A)_2$ -OBzl, $(\beta A, LF)$ - βA -OBzl etc	$(LF)_2$ -OMe, $(LF)_3$ -OMe etc	LF- β A-OBzl	$(LF)_2$ -OMe, $(LF)_3$ -OMe etc	
LW-OMe	n.d.	β A-LW-OMe	$(\beta A)_2$ -OBzl	(LW) ₂ -OMe	LW- β A-OBzl	(LW) ₂ -OMe	
LY-OMe	n.d.	β A-LY-OMe	$(\beta A)_2$ -OBzl, $(\beta A)_2$ -LY-OMe etc	(LY) ₂ -OMe	LY- β A-OBzl	$(LY)_2$ -OMe, $(\beta A)_2$ -LY-OMe	
LP-OMe	n.d.	LP- β A-OBzl	$(\beta A)_2$ -OBzl, LP- $(\beta A)_2$ -OBzl etc	n.d.	n.d.	n.d.	
LS-OMe	n.d.	n.d.	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LT-OMe	(LT) ₂ -OMe	β A-LT-OMe	$(\beta A)_2$ -OBzl, $(LT)_2$ -OMe	n.d.	n.d.	n.d.	
LN-OMe	n.d.	β A-LN-OMe	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LH-OMe	n.d.	β A-LH-OMe	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LK-OMe	n.d.	β A-LK-OMe	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LR-OMe	n.d.	β A-LR-OMe	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LD-OMe	n.d.	n.d.	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
LE-OMe	n.d.	n.d.	$(\beta A)_2$ -OBzl	n.d.	n.d.	n.d.	
bA-OMe	n.d.	_		n.d.	_		
bA-OBzl	$(\beta A)_2$ -OBzl	_		n.d.	_		
bA-OtBu	$(\beta A)_2$ -OtBu	_	_	n.d.	_		

Fig. 1. (A) Effect of the substrate concentration on the production of Car-OMe and β -Ala- β -Ala-OBzl. Upper panel: Effect of β -Ala-OBzl concentration. L-His-OMe at 20 mM and β -Ala-OBzl at 0 to 40 mM were used as the acyl acceptor and donor, respectively. Lower panel: Effect of L-His-OMe concentration. L-His-OMe at 0 to 30 mM and β -Ala-OBzl at 20 mM were used as the acyl acceptor and donor, respectively. (B) Effect of pH on production of Car-OMe and β -Ala- β -Ala-OBzl. (C) Time dependence and yield evaluation of Car-OMe synthesis. The upper panel shows the time dependence in the production of Car-OMe and β -Ala- β -Ala-OBzl. L-His-OMe at 20 mM and β -Ala-OBzl at 20 mM were used as the acyl acceptor and donor, respectively. The lower panel shows a chromatogram of amino acid analyzer. L-His-OMe at 20 mM and β -Ala-OBzl at 20 mM were used as the acyl acceptor and donor, respectively.

hardly increased after that. Similarly, byproduct, β -Ala- β -Ala-OBzl, was also produced until 5 h. After 24 h reaction, 20 mM β -Ala-OBzl was completely consumed and con-

verted into Car-OMe, β -Ala- β -Ala-OBzl, and free β -Ala. To evaluate the conversion rate of 20 mM β -Ala-OBzl to Car-OMe and the synthesis of undesirable products such as β -Ala- β -Ala-OBzl and free β -Ala, we quantified Car, free β -Ala, and L-His in the alkaline-treated reaction mixture of 24 h reaction by amino acid analyzer. The concentration of Car in the reaction mixture is approximately 6.4 mM, and those of β -Ala and L-His were respectively approximately 8.0 mM and 9.3 mM (Fig. 1C). From these values, the conversion rate of β -Ala-OBzl to Car-OMe was estimated to be over 30%.

Conclusion

We have found that Car-OMe could be produced from β -Ala-OBzl and L-His-OMe by aminolysis reaction of S9AP-St. To engineer the serine peptidase into "transpeptidase" for tailoring highly capable biocatalyst, we constructed S9AP-St variant, S502C S9AP-St. However, the substrate specificity of aminolysis reaction was changed by the substitution of catalytic Ser⁵⁰² with Cys. Instead, it has successfully produced Car-OMe with a conversion rate of β -AlaOBzl to Car-OMe being over 30% by the optimization of production of Car-OMe using S9AP-St.

References

- Tsuneyoshi Y., Tomonaga S., Asechi M., Morishita K., Denbow D. M., Furuse M. (2007) Central administration of dipeptides, betaalanyl-BCAAs, induces hyperactivity in chicks. *BMC Neurosci.* 8: 37.
- Elliott R. J., Bennet A. J., Braun C. A., MacLeod A. M., Borgford T. J. (2000) Active-site variants of *Streptomyces griseus* protease B with peptide-ligation activity. *Chem. Biol.* 7: 163–171.
- Joe K., Borgford T. J., Bennet A. J. (2004) Generation of a thermostable and denaturant-resistant peptide ligase. *Biochemistry* 43: 7672–7677.
- 4) Usuki H., Uesugi Y., Iwabuchi M., Hatanaka T. (2009) Putative "acylaminoacyl" peptidases from *Streptomyces griseus* and *S. coelicolor* display "aminopeptidase" activities with distinct substrate specificities and sensitivities to reducing reagent. *Biochim. Biophys. Acta.* **1794**: 468–475.