アラニルヒスチジン合成に向けた放線菌由来セリンペプチダーゼ の機能改変

有馬 二朗

(鳥取大学 農学部)

研究の目的

魚類や哺乳類の筋肉中には、アンセリン(β-Ala- -methyl-L-His)やカルノシン (β-Ala-L-His; Car)など、β-Alaを含有するペプチドが存在し、抗潰瘍や抗疲労作用を持 つペプチドとして知られている。最近の研究から、L-Hisに代わり、分岐鎖アミノ酸をC 側に持つペプチドも、Carと同様の生理機能を持つことが分かり¹⁾、β-AlaをN側に持つペ プチドの有用性が高まりつつある。

セリンペプチダーゼは時として、加水分解活性に付随してアミノリシス活性を示す。 更にいくつかの酵素では、活性中心Ser残基をCysに置換し、「トランスペプチダーゼ」 に機能変換された例も存在する^{2,3)}。我々は、放線菌よりpeptidase S9 ファミリーに属す るセリンペプチダーゼ(S9AP)を見出した⁴⁾。中でも、中等度高熱性放線菌*Streptomyces thermocyaneoviolaceus* NBRC14271 由来のS9AP(S9AP-St)は、微弱なβ-Ala誘導体の加 水分解活性を示した。本研究では、S9AP-StのSer残基をCys残基に置換した酵素、S502C S9APを構築し、野生型及び変異酵素において、そのβ-Ala含有ペプチド合成活性及び有 用ペプチドの生産能を評価した。

方法

S502C S9AP-St は、QuickChange site directed mutagenesis kit (Stratagene 社)を用いて構築した。野生型及び S502C S9AP-St をそれぞれ、大腸菌 BL21 (DE3)株に発現させ、イオン交換カラムに供することで精製した。アミノリシス反応によるβ-Ala ペプチドの合成は、pH 8.0、25 の条件で行った。 -アミノ酸誘導体(アシル受容体)及びβ-Ala 誘導体(アシル供与体)が存在する混合液に、40 μg/ml になるよう酵素を添加することで反応を開始し、数分~数時間後、混合液と同量の 3%ギ酸溶液を添加して反応を終了させた。反応液は UPLC-ESI-TOF-MS、またはアミノ酸分析機を用いて解析した。

結果

S9AP-Stのβ-Ala-pNA に対する加水分解活性(0.02 µmol/min/mg) は、L-Phe-pNAに対す る活性(40 µmol/min/mg) の約 1/2000 であった。しかし、β-Ala誘導体を単一の基質とし たとき、アミノリシス活性を示したことから(Table 1)、我々は高いアミノリシスの機 能を付加できれば、様々なβ-Alaペプチド合成が可能となると想定し、活性中心のSer⁵⁰² をCysに置換したS502C S9AP-St を構築した。予測通り、変異酵素は加水分解活性を示 さなくなり、単一のアミノ酸誘導体を基質としたとき、疎水アミノ酸に対し高いアミノ リシス活性を示した。しかしβ-Ala 誘導体を単一の基質としたとき、変異酵素はアミノ リシス活性を示さず、β-Ala からなるホモペプチド合成能を失った(Table 1)、β-Ala 誘導体と -アミノ酸誘導体の2種を反応液に混合し、β-Alaを含有するヘテロなペプチ ドの合成能を評価した。その結果、野生型酵素は様々なアミノ酸誘導体を基質として利 用し、β-AlaをN側に持つペプチドを優先的に合成した(Table 1)。一方、S502C S9AP-St はヘテロなペプチドの合成能を保持していたが、合成ペプチドは全てC側にβ-Alaが存在 していた(Table 1)。この結果から、S9AP-StのSer⁵⁰²をCysに置換することで、アミノリ シス反応における基質特異性が変化することが示唆された。

上記検討から、野生型 S9AP-St が様々な β -Ala ペプチドの合成能を示したことから、 次に β -Ala-L-His-OMe (Car-OMe)合成量を指標として、野生型酵素の β -Ala ペプチド合 成における最適化を行った。Fig. 1A に示されるよう、Car-OMe 合成は β -Ala-OBzl 濃度 に非依存的であったが、副生成物、 β -Ala- β -Ala-OBzl の合成量は β -Ala-OBzl 濃度が上昇 するにつれ増加した。一方で、L-His-OMe 濃度の上昇に従い Car-OMe 合成は上昇し、 β -Ala- β -Ala-OBzl 合成は減少した。合成における pH の影響を検討した結果、pH 8.5 で Car-OMe 合成活性は最大となった (Fig. 1B)。しかし β -Ala- β -Ala-OBzl 合成量は pH の 上昇に伴って増加した。副生成物、 β -Ala- β -Ala- β -Ala-OBzl の合成はこれらの検討では 観察されなかった。

Fig. 1C に示すよう、反応液中の酵素濃度を 0.1 mg/ml、基質を共に 20 mM としたと きに、Car-OMe 合成は 5 時間後まで効率的に進み、それ以降増加はほとんど見られなか った。一方、β-Ala-OBzl は 24 時間後にはほぼ完全に消費された。β-Ala-OBzl から Car-OMe への変換率を決定するため、24 時間反応させた反応混合液中に存在する Car-OMe と各 基質の濃度をアミノ酸分析機で解析した。アルカリ処理によりサンプルの酵素反応停止 と脱エステルを行った。Fig. 1C に示すよう、アミノ酸分析機で測定した結果、Car 濃

Substrate	Products					
	wild-type S9AP-St			S502C S9AP-St		
			w/ βA-OBzl		w/ βA-OBzl	
		βА-Хаа, Хаа-βА	Byproducts		βA-Xaa, Xaa-βA	Byproducts
G-OMe	n.d.	n.d.	(βA) ₂ -OBzl	G ₃ -OMe	G-βA-OBzl	G3-OMe, G2-BA-OBzl
∟V-OMe	(∟V)₂-OMe	βA-∟V-OMe	(βA) ₂ -OBzI, (βA) ₂ -LV-OMe	n.d.	n.d.	n.d.
LL-OEt	n.d.	βA-∟L-OEt	(βA)₂-OBzl	(LL)2-OMe, (LL)3-OMe etc	LL-βA-OBzl	(LL)2-OMe, (LL)3-OMe etc
LI-OMe	n.d.	βA- _L I-OMe	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
∟M-OMe	n.d.	βA- _L M-OMe	(βA) ₂ -OBzI, (βA) ₂ -LM-OMe etc	(LM)2-OMe	LM-βA-OBzl	(LM) ₂ -OMe, (LM) ₂ -βA-OBzl
∟F-OEt	n.d.	βA-∟F-OEt	(βA) ₂ -OBzI, (βA, LF)- βA-OBzI etc	(LF)2-OMe, (LF)3-OMe etc	∟F-βA-OBzl	(LF)2-OMe, (LF)3-OMe etc
∟W-OMe	n.d.	βA-LW-OMe	(βA) ₂ -OBzl	(LW)2-OMe	∟W-βA-OBzl	(LW)2-OMe
∟Y-OMe	n.d.	βA- _L Y-OMe	(βA) ₂ -OBzl, (βA) _{2^{-L}} Y-OMe etc	(LY)2-OMe	LY-βA-OBzl	(_L Y) ₂ -OMe, (βA) ₂ - _L Y-OMe
LP-OMe	n.d.	∟P-βA-OBzl	(βA) ₂ -OBzl, LP-(βA) ₂ -OBzl etc	n.d.	n.d.	n.d.
∟S-OMe	n.d.	n.d.	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
LT-OMe	(_L T) ₂ -OMe	βA- _L T-OMe	(βA) ₂ -OBzI, (LT) ₂ -OMe	n.d.	n.d.	n.d.
∟N-OMe	n.d.	βA-∟N-OMe	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
∟H-OMe	n.d.	βA-∟H-OMe	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
∟K-OMe	n.d.	βA-∟K-OMe	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
LR-OMe	n.d.	βA- _L R-OMe	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
∟D-OMe	n.d.	n.d.	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
LE-OMe	n.d.	n.d.	(βA) ₂ -OBzl	n.d.	n.d.	n.d.
bA-OMe	n.d.			n.d.		
bA-OBzl	(βA) ₂ -OBzl			n.d.		
bA-OtBu	(βA)2-OtBu			n.d.		

Table 1. Tested chemicals and peptides synthesized by both wild-type and S502C S9AP-Sts.

Fig. 1 (A) Effect of the substrate concentration on the production of Car-OMe and β -Ala- β -Ala-OBzl. Upper panel: Effect of β -Ala-OBzl concentration. L-His-OMe at 20 mM and β -Ala-OBzl at 0 to 40 mM were used as the acyl acceptor and donor, respectively. Lower panel: Effect of L-His-OMe concentration. L-His-OMe at 0 to 30 mM and β -Ala-OBzl at 20 mM were used as the acyl acceptor and donor, respectively. (B) Effect of pH on production of Car-OMe and β -Ala- β -Ala-OBzl. (C) Time dependence and yield evaluation of Car-OMe synthesis. The upper panel shows the time dependence in the production of Car-OMe and β -Ala- β -Ala-OBzl at 20 mM were used as the acyl acceptor and donor, respectively. The lower panel shows a chromatogram of amino acid analyzer. L-His-OMe at 20 mM and β -Ala-OBzl at 20 mM were used as the acyl acceptor and donor, respectively.

度は約 6.4 mM であり、β-Ala-OBzl から Car-OMe への変換率は、少なくとも 30%以上で あると計算された。

結論

我々は、S9AP-St のアミノリシス反応を使用することで、β-Ala-OBzl と L-His-OMe から Car-OMe を合成できることを見出した。セリンペプチダーゼから「トランスペプ チダーゼ」に機能置換し、より優れた生体触媒に仕立て上げることを目的して、我々は 活性中心セリン残基に変異を施した S502C S9AP-St を構築した。しかし、この変異に よってアミノリシスにおける基質特異性が大きく変化した。一方、野生型 S9AP-St に よる Car-OMe 合成では、β-Ala-OBzl からの変換率が 30%以上であることが判明した。

文献

1) Tsuneyoshi Y, Tomonaga S, Asechi M, Morishita K, Denbow DM, Furuse M. (2007) Central administration of dipeptides, beta-alanyl-BCAAs, induces hyperactivity in chicks. BMC Neurosci. 8:37.

- 2) Elliott RJ, Bennet AJ, Braun CA, MacLeod AM, Borgford TJ. (2000) Active-site variants of *Streptomyces griseus* protease B with peptide-ligation activity. Chem. Biol. 7:163–171.
- 3) Joe K, Borgford TJ. Bennet AJ. (2004) Generation of a thermostable and denaturant-resistant peptide ligase. Biochemistry 43:7672–7677.
- Usuki H, Uesugi Y, Iwabuchi M, Hatanaka T. (2009) Putative "acylaminoacyl" peptidases from *Streptomyces griseus* and *S. coelicolor* display "aminopeptidase" activities with distinct substrate specificities and sensitivities to reducing reagent. Biochim. Biophys. Acta. 1794:468–475.